Arduino ile Kendini Dengeleyen Robot

Evet yeni bir Proje ile karşınızdayım.

Bu sefer 2 teker üzerinde kendini dengeleyen bir Robot yaptım.İlk önce gerekli malzemeler
– Arduino Uno veya Mega ama ben Mini Arduino kullandim
– L298N Motor Sürücü Kartı
– Mpu 6050 6 eksen Gyro-İvmeölçer
– 3 Adet potansiyometre
– Mekanik için pleksi levha veya sert plastik kaplardan kesebilirsiniz.
– 4 adet mini AAA şarj edilebilen pil


Gerekli Arduino, MPU ve L298 Motor sürücünün bağlantı şeması

Robotumuzun temel yapısını resimlerdeki gibi kendi kafamıza göre 2 teker üzerine dengeli şekilde tamamlıyoruz.

Mpu6050 gyro sensörünü Resimd ve Videodaki gibi yatay şekilde en alt levhaya sabitleyelim.Böylece titreşim en düşük seviye inmiş olacak.

Bu arada şunu hatırlatayım.
Ben kendim Mini Arduino kullandığım için kullandığım bacaklar değisik, zaten kod icindede belirttim.
int ENA = 8;
int IN1 = 9;
int IN2 = 10;

int IN3 = 5;
int IN4 = 4;
int ENB = 3;

Son olarak kullandığınız MPU’da INT pini varsa bunu Arduinodaki INT0 yani 2 numaralı Pine bağlamayı unutmayın.

Evet şimdi Arduinoya şu aşağıdaki Kodları yüklüyoruz.

 #include <PID_v1.h>
#include <LMotorController.h>
 #include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
 #include "Wire.h"
 #endif

#define LOG_INPUT 0
 #define MANUAL_TUNING 0
 #define LOG_PID_CONSTANTS 0 //MANUAL_TUNING must be 1
 #define MOVE_BACK_FORTH 0

#define MIN_ABS_SPEED 30

//MPU

MPU6050 mpu;

// MPU control/status vars
 bool dmpReady = false; // set true if DMP init was successful
 uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
 uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
 uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
 uint16_t fifoCount; // count of all bytes currently in FIFO
 uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
 Quaternion q; // [w, x, y, z] quaternion container
 VectorFloat gravity; // [x, y, z] gravity vector
 float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector

//PID

#if MANUAL_TUNING
 double kp , ki, kd;
 double prevKp, prevKi, prevKd;
 #endif
 double originalSetpoint = 174.29;
 double setpoint = originalSetpoint;
 double movingAngleOffset = 0.3;
 double input, output;
 int moveState=0; //0 = balance; 1 = back; 2 = forth

#if MANUAL_TUNING
 PID pid(&input, &output, &setpoint, 0, 0, 0, DIRECT);
 #else
 PID pid(&input, &output, &setpoint, 70, 240, 1.9, DIRECT);
 #endif

//MOTOR CONTROLLER
 /*
 int ENA = 5;
int IN1 = 3;
 int IN2 = 4;
 int IN3 = 8;
 int IN4 = 9;
 int ENB = 10;
 */

// BENIM MINI ARDUINOYA GÖRE
 int ENA = 8;
 int IN1 = 9;
 int IN2 = 10;

int IN3 = 5;
 int IN4 = 4;
 int ENB = 3;

LMotorController motorController(ENA, IN1, IN2, ENB, IN3, IN4, 0.6, 1);

//timers

long time1Hz = 0;
 long time5Hz = 0;

volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
 void dmpDataReady()
 {
 mpuInterrupt = true;
 }

void setup()
 {
 // join I2C bus (I2Cdev library doesn't do this automatically)
 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
 Wire.begin();
 TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
 Fastwire::setup(400, true);
 #endif

// initialize serial communication
 // (115200 chosen because it is required for Teapot Demo output, but it's
 // really up to you depending on your project)
 Serial.begin(115200);
 while (!Serial); // wait for Leonardo enumeration, others continue immediately

// initialize device
 Serial.println(F("Initializing I2C devices..."));
 mpu.initialize();

// verify connection
 Serial.println(F("Testing device connections..."));
 Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

// load and configure the DMP
 Serial.println(F("Initializing DMP..."));
 devStatus = mpu.dmpInitialize();

// supply your own gyro offsets here, scaled for min sensitivity
 mpu.setXGyroOffset(220);
 mpu.setYGyroOffset(76);
 mpu.setZGyroOffset(-85);
 mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

// make sure it worked (returns 0 if so)
 if (devStatus == 0)
 {
 // turn on the DMP, now that it's ready
 Serial.println(F("Enabling DMP..."));
 mpu.setDMPEnabled(true);

// enable Arduino interrupt detection
 Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
 attachInterrupt(0, dmpDataReady, RISING);
 mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main loop() function knows it's okay to use it
 Serial.println(F("DMP ready! Waiting for first interrupt..."));
 dmpReady = true;

// get expected DMP packet size for later comparison
 packetSize = mpu.dmpGetFIFOPacketSize();

//setup PID

pid.SetMode(AUTOMATIC);
 pid.SetSampleTime(10);
 pid.SetOutputLimits(-255, 255);
 }
 else
 {
 // ERROR!
 // 1 = initial memory load failed
 // 2 = DMP configuration updates failed
 // (if it's going to break, usually the code will be 1)
 Serial.print(F("DMP Initialization failed (code "));
 Serial.print(devStatus);
 Serial.println(F(")"));
 }
 }

void loop()
 {
 // if programming failed, don't try to do anything
 if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
 while (!mpuInterrupt && fifoCount < packetSize)
 {
 //no mpu data - performing PID calculations and output to motors

pid.Compute();
 motorController.move(output, MIN_ABS_SPEED);

unsigned long currentMillis = millis();

if (currentMillis - time1Hz >= 1000)
 {
 loopAt1Hz();
 time1Hz = currentMillis;
 }

if (currentMillis - time5Hz >= 5000)
 {
 loopAt5Hz();
 time5Hz = currentMillis;
 }
 }

// reset interrupt flag and get INT_STATUS byte
 mpuInterrupt = false;
 mpuIntStatus = mpu.getIntStatus();

// get current FIFO count
 fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)
 if ((mpuIntStatus & 0x10) || fifoCount == 1024)
 {
 // reset so we can continue cleanly
 mpu.resetFIFO();
 Serial.println(F("FIFO overflow!"));

// otherwise, check for DMP data ready interrupt (this should happen frequently)
 }
 else if (mpuIntStatus & 0x02)
 {
 // wait for correct available data length, should be a VERY short wait
 while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO
 mpu.getFIFOBytes(fifoBuffer, packetSize);

// track FIFO count here in case there is > 1 packet available
 // (this lets us immediately read more without waiting for an interrupt)
 fifoCount -= packetSize;

mpu.dmpGetQuaternion(&q, fifoBuffer);
 mpu.dmpGetGravity(&gravity, &q);
 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
 #if LOG_INPUT
Serial.print("ypr\t");
 Serial.print(ypr[0] * 180/M_PI);
 Serial.print("\t");
 Serial.print(ypr[1] * 180/M_PI);
 Serial.print("\t");
 Serial.println(ypr[2] * 180/M_PI);
 #endif
 input = ypr[1] * 180/M_PI + 180;
 }
 }

void loopAt1Hz()
 {
 #if MANUAL_TUNING
 setPIDTuningValues();
 #endif
 }

void loopAt5Hz()
 {
 #if MOVE_BACK_FORTH
 moveBackForth();
 #endif
 }

//move back and forth

void moveBackForth()
{
 moveState++;
 if (moveState > 2) moveState = 0;

if (moveState == 0)
 setpoint = originalSetpoint;
 else if (moveState == 1)
 setpoint = originalSetpoint - movingAngleOffset;
 else
 setpoint = originalSetpoint + movingAngleOffset;
 }

//PID Tuning (3 potentiometers)

#if MANUAL_TUNING
 void setPIDTuningValues()
 {
 readPIDTuningValues();

if (kp != prevKp || ki != prevKi || kd != prevKd)
 {
 #if LOG_PID_CONSTANTS
 Serial.print(kp);
 Serial.print(", ");
 Serial.print(ki);
 Serial.print(", ");
 Serial.println(kd);
 #endif

pid.SetTunings(kp, ki, kd);
 prevKp = kp; prevKi = ki; prevKd = kd;
 }
 }

void readPIDTuningValues()
 {
 int potKp = analogRead(A0);
 int potKi = analogRead(A1);
 int potKd = analogRead(A2);

kp = map(potKp, 0, 1023, 0, 25000) / 100.0; //0 - 250
 ki = map(potKi, 0, 1023, 0, 100000) / 100.0; //0 - 1000
 kd = map(potKd, 0, 1023, 0, 500) / 100.0; //0 - 5
 }
#endif